Integration of Ad-hoc with wifi network

Wireless?

- A wireless LAN or WLAN is a wireless local area network that uses radio waves as its carrier.
- The last link with the users is wireless, to give a network connection to all users in a building or campus.
- The backbone network usually uses cables

Common Topologies

The wireless LAN connects to a wired LAN

- There is a need of an access point that bridges wireless LAN traffic into the wired LAN.
- The access point (AP) can also act as a repeater for wireless nodes, effectively doubling the maximum possible distance between nodes.

Common Topologies

Complete Wireless Networks

- The physical size of the network is determined by the maximum reliable propagation range of the radio signals.
- Referred to as **ad hoc** networks
- Are self-organizing networks without any centralized control
- Suited for temporary situations such as meetings and conferences.

How do wireless LANs work?

Wireless LANs operate in almost the same way as wired LANs, using the same networking protocols and supporting the most of the same applications.

How are WLANs Different?

- They use specialized physical and data link protocols
- They integrate into existing networks through access points which provide a bridging function
- They let you stay connected as you **roam** from one coverage area to another
- They have unique **security** considerations
- They have specific **interoperability** requirements
- They require different hardware
- They offer **performance** that differs from wired LANs.

Physical and Data Link Layers

Physical Layer:

 The wireless NIC takes frames of data from the link layer, scrambles the data in a predetermined way, then uses the modified data stream to modulate a radio carrier signal.

Data Link Layer:

• Uses Carriers-Sense-Multiple-Access with Collision Avoidance (CSMA/CA).

Integration With Existing Networks

- Wireless Access Points (APs) a small device that bridges wireless traffic to your network.
- Most access points bridge wireless LANs into Ethernet networks, but Token-Ring options are available as well.

Integration With Existing Networks

Roaming

- Users maintain a continuous connection as they roam from one physical area to another
- Mobile nodes automatically register with the new access point.
- Methods: DHCP, Mobile IP
- IEEE 802.11 standard does not address roaming, you may need to purchase equipment from one vendor if your users need to roam from one access point to another.

Security

- In theory, spread spectrum radio signals are inherently difficult to decipher without knowing the exact hopping sequences or direct sequence codes used
- The IEEE 802.11 standard specifies optional security called "Wired Equivalent Privacy" whose goal is that a wireless LAN offer privacy equivalent to that offered by a wired LAN. The standard also specifies optional authentication measures.

Interoperability

- Before the IEEE 802.11 interoperability was based on cooperation between vendors.
- IEEE 802.11 only standardizes the physical and medium access control layers.
- Vendors must still work with each other to ensure their IEEE 802.11 implementations interoperate
- Wireless Ethernet Compatibility Alliance (WECA) introduces the Wi-Fi Certification to ensure cross-vendor interoperability of 802.11b solutions

Hardware

- PC Card, either with integral antenna or with external antenna/RF module.
- ISA Card with external antenna connected by cable.
- Handheld terminals
- Access points

Hardware

CISCO Aironet 350 series

Semi Parabolic Antenna

Wireless Handheld Terminal

BreezeCOM AP

Performance

- **802.11a** offers speeds with a theoretically maximum rate of 54Mbps in the 5 GHz band
- **802.11b** offers speeds with a theoretically maximum rate of 11Mbps at in the 2.4 GHz spectrum band
- **802.11g** is a new standard for data rates of up to a theoretical maximum of 54 Mbps at 2.4 GHz.

Privacy

- Cryptographic techniques
- WEP Uses RC4 symmetric key, stream cipher algorithm to generate a pseudo random data sequence. The stream is XORed with the data to be transmitted
- Key sizes: 40bits to 128bits
- Unfortunately, recent attacks have shown that the WEP approach for privacy is vulnerable to certain attack regardless of key size

Data Integrity

- Data integrity is ensured by a simple encrypted version of CRC (Cyclic Redundant Check)
- Also vulnerable to some attacks

Security Problems

- Security features in Wireless products are frequently not enabled.
- Use of static WEP keys (keys are in use for a very long time). WEP does not provide key management.
- Cryptographic keys are short.
- No user authentication occurs only devices are authenticated. A stolen device can access the network.
- Identity based systems are vulnerable.
- Packet integrity is poor.

WLAN Migration – Cutting The Cord

- Essential Questions
- Choosing the Right Technology
- Data Rates
- Access Point Placement and Power
- Antenna Selection and Placement
- Connecting to the Wired LAN
- The Site Survey

Thank you

